

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 3810-3812

www.elsevier.com/locate/jorganchem

Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles

Irina P. Beletskaya ^{a,*}, Alexander S. Sigeev ^a, Alexander S. Peregudov ^b, Pavel V. Petrovskii ^b

^a Department of Chemistry, Moscow State University, 119899, GSP-3, Moscow, Russia
^b A.N. Nesmeyanov Institute of Organo-Element Compounds, Russian Academy of Science, Vavilova str. 28, 119991V-344, Moscow, Russia

Received 25 May 2004; accepted 10 July 2004 Available online 14 August 2004

Abstract

Aryl nitriles ArCN were obtained by the Cu(I)/Cu(II) catalysed reactions of aryl diazonium salts with KCN in good yields. © 2004 Elsevier B.V. All rights reserved.

Keywords: Aryl nitrile; Aryldiazonium salts; Catalytic Sandmeyer cyanation; Copper(I) catalyst

Aryl nitriles are important class of organic compounds widely used in organic synthesis and in a production of pharmaceuticals, herbicides and dyes. The general ways to these compounds in a laboratory, until recently, were Rosenmund-von Braun reaction of Ar-Hal with CuCN [1] and Sandmeyer reaction of ArN₂X with CuCN [2]. The first reaction is known in a catalytic version with CuI as a catalyst but it needs a huge amount of rather expensive ligand [3]. More recently, Ni- and Pd-catalysed reactions of ArHal with MCN (M = K, Na, Zn, SiMe₃) were developed which allow to perform a cyanation even of ArCl using Pd(OAc)₂-dppe system [4–6].

In this paper, we report for the first time the catalytic version of Sandmeyer reaction. The reaction of p-FC₆H₄N₂BF₄ with KCN catalysed by 10 mol% CuCN/phen in the presence of a phase transfer cocatalyst was chosen for the search of optimal conditions. The mechanism of Sandmeyer reaction proposed by Kochi [7] and supported by a subsequent study [8], in-

volves two steps with a formation of aryl radicals on the first step.

The implementation of catalytic version of the reaction was hindered through a competition of two reactions (Scheme 1) of aryl radical: oxidation by Cu(II) with a formation of ArCN (a) and hydrogen abstraction from a molecule of solvent leading to arene (b). Formation of a variety of $\text{Cu}(\text{CN})_n^{(n-1)}$ and $\text{Cu}(\text{CN})_n^{(n-2)}$ complexes in the $\text{Cu}(\text{I})\text{-Cu}(\text{II})\text{-CN}^-$ system with the ratio depending on the concentration of CN^- and with different reactivity [9] can cause further problems. Moreover, a noncatalytic formation of arylazocyanide 3 can take place (Scheme 2).

Varying the reaction conditions (Table 1) we have showed that the highest ratio of [ArCN]/[ArH] is observed in polar aprotic solvents such as MeCN or DMSO. Addition of crown ethers gives better results than the addition of R₄NX (Table 1, entries 3, 4, 10 vs 1, 2, 9). The nature of crown ether does not affect the

^{*} Corresponding author. Tel.: +7 095 1359369; fax: +7 095 938

E-mail addresses: beletska@org.chem.msu.su (I.P. Beletskaya), sigeev@ineos.ac.ru (A.S. Sigeev).

yield and the ratio of products (Table 1, entries 3, 4). The highest yield of p-fluorobenzonitrile 1 under these conditions is 61% (Table 1, entry 3). In nonpolar solvents such as benzene or CCl_4 the major product is arylazocyanide 3 due to a low solubility of Cu(I) catalyst (Table 1, entries 9–11).

Yield of nitrile 1 was raised up to 82% when $Cu(BF_4)_2$ was used as a co-catalyst (Table 1, entry 13). It should be noted, that this effect not due to increase of a catalyst concentration because a usage of 20% CuCN/phen leads only to a slight increase of the yield of the nitrile 1 (Table

1, entry 12). Presumably, the addition of $Cu(BF_4)_2$ accelerates the step (a). We used these conditions in the reactions of ArN_2BF_4 (3) with electron-withdrawing and electron-donating groups (Table 2) (see Scheme 3).

The reactions with diazonium salts with electronwithdrawing groups lead to formation of a corresponding nitrile in a high yield (Table 2, entries 2, 4, 7). The yield was lower for the compounds containing electron-donating groups (Table 2, entries 5, 6). It should be noted that, in the number of cases, aryldiazonium salts bearing electron-donating groups cannot be in-

Scheme 2.

Table 1 Dependence of a yield and a ratio of products of the reaction of p-FC₆H₄N₂BF₄ with KCN^a catalysed by CuCN/phen on reaction conditions

N	Phase transfer catalyst	Solvent	L	Time (min)	Conversion (%) ^b	Yield	(%) ^b	
						1	2	3
1	Et ₄ NBr	CH ₃ CN	Phen ^c	60	80	40	28	
2	Et ₃ BnNCl	CH_3CN	Phen	30	100	51	34	_
3	Dibenzo-18-crown-6	CH ₃ CN	Phen	20	100	61	32	_
4	Dicyclohexyl-18-crown-6	CH_3CN	Phen	20	100	60	31	_
5	Dibenzo-18-crown-6	CH ₃ CN	_	20	100	30	65	_
6	Dibenzo-18-crown-6	DMSO	Phen	10	100	50	31	_
7	_	DMSO	Phen	10	100	52	26	_
8	_	DMSO	_	10	100	50	45	_
9	Et ₃ BnNCl	C_6H_6	Phen	240	100	_	_	54
10	Dibenzo-18-crown-6	C_6H_6	Phen	240	100	24	_	42
11	Dibenzo-18-crown-6	CCl_4	Phen	240	100	9	_	62
12 ^d	Dibenzo-18-crown-6	CH ₃ CN	Phen	20	100	65	29	_
13 ^e	Dibenzo-18-crown-6	CH ₃ CN	Phen	120	100	82	14	-

^a Reaction conditions: 1.0 mmol *p*-FC₆H₄N₂BF₄, 1.5 mmol KCN, 10% mol CuCN/phen, 10% mol phase transfer catalyst, 4 ml of solvent, room temperature, 20 min.

Table 2
The reaction of ArN₂BF₄ with KCN in acetonitrile catalysed by CuCN/phen/Cu(BF₄)₂ [11]

N	ArN ₂ BF ₄	ArCN	Yield ^a (%)
1	PhN ₂ BF ₄	PhCN	72
2	$4-NO_{2}C_{6}H_{4}N_{2}BF_{4}$	$4-NO_2C_6H_4CN$	93
3	$4-FC_6H_4N_2BF_4$	4-FC ₆ H ₄ CN	79
4	$4-AcC_6H_4N_2BF_4$	$4-AcC_6H_4CN$	88
5	$4-MeC_6H_4N_2BF_4$	$4-MeC_6H_4CN$	66
6	$4-MeOC_6H_4N_2BF_4$	$4-MeOC_6H_4CN$	52
7	3 -Me- 4 -BrC $_6$ H $_4$ N $_2$ BF $_4$	3 -Me- 4 -BrC $_6$ H $_4$ CN	74

^a Isolated yield.

b 19 F NMR data.

^c 1,10-phenantroline.

d 20% CuCN/phen.

^e In the presence of 10% Cu(BF₄)₂.

Scheme 3.

volved in such reactions even with stoichiometric amounts of copper salt [10]. However, the influence of the nature of substituent on the ratio and the yield of ArCN/ArH requires further investigations.

In conclusion, we accomplished the catalytic version of Sandmeyer reaction for a number of aryl diazonium salts with a good yield of corresponding aryl nitriles. This result is of a particular interest for contemporary studies in catalytic organic synthesis that tend to replace the expensive Pd with Cu in Ullman-type reactions of formation of carbon–carbon and carbon–heteroatom bonds.

References

- [1] (a) K.W. Rosenmund, E. Struck, Ber. 52 (1919) 1749;
 - (b) J. von Braun, G. Manz, Ann. 488 (1931) 111.
- [2] (a) T. Sandmeyer, Berichte 17 (1884) 1633;
 - (b) T. Sandmeyer, Ber. 23 (1890) 1880.
- [3] (a) W.R.H. Hurtley, J. Chem. Soc. (1929) 1870;
 - (b) J.X. Wu, B. Beck, R.X. Ren, Tetrahedron Lett. 43 (2002) 387.
- [4] (a) For Ni-catalyzed cyanation of aryl halides and triflates, see: L. Cassar, M. Foa, F. Montanari, G.P. Marinelli, J. Organomet. Chem. 173 (1979) 335;
 - (b) Y. Sakakibara, F. Okuda, A. Shimoyabashi, K. Kirino, M. Sakai, N. Uchino, K. Takagi, Bull. Chem. Soc. Jpn. 61 (1988) 1985;
 (c) Y. Sakakibara, Y. Ido, K. Sasaki, M. Sakai, N. Uchino, Bull. Chem. Soc. Jpn. 66 (1993) 2776;
 - (d) M.R.I. Chambers, D.A. Widdowson, J. Chem. Soc., Perkin Trans. 1 (1989) 1365.
- [5] (a) For Pd-catalyzed cyanation of aryl halides and triflates, see: T. Okano, J. Kiji, Y. Toyooka, Chem. Lett. (1998) 425;
 - (b) P.E. Maligres, M.S. Waters, F. Fleitz, D. Askin, Tetrahedron Lett. 40 (1999) 8193;
 - (c) M. Alterman, A. Hallberg, J. Org. Chem. 65 (2000) 7984;

- (d) K. Takagi, T. Okamoto, Y. Sakakibara, A. Ohno, S. Oka, N. Hayama, Bull. Chem. Soc. Jpn. 49 (1976) 3177;
- (e) K. Takagi, K. Sasaki, Y. Sakakibara, Bull. Chem. Soc. Jpn. 64 (1991) 1118;
- (f) B.A. Anderson, E.C. Bell, F.O. Ginah, N.K. Harn, L.M. Pagh, J.P. Wepsiec, J. Org. Chem. 63 (1998) 8224;
- (g) Y. Anderson, B. Langstrom, J. Chem. Soc., Perkin Trans. 1 (1994) 1395.
- (h) Y. Akita, M. Shimazaki, A. Ohta, Synthesis (1981) 974;
- (i) T. Okano, M. Iwahara, J. Kiji, Synlett (1998) 243;
- (j) U. Drechsler, M. Hanack, Synlett (1998) 1207;
- (k) H. Kubota, K.C. Rice, Tetrahedron Lett. 39 (1998) 2907;
- (1) T. Erker, S. Nemec, Synthesis 1 (2004) 23.
- [6] (a) For metal-catalyzed cyanation of aryl chlorides, see: M. Sundermeyer, A. Zapf, M. Beller, J. Sans, Tetrahedron Lett. 42 (2001) 6707;
 - (b) F. Jin, P.N. Confalone, Tetrahedron Lett. 41 (2000) 3271;
 - (c) M. Sundermeyer, A. Zapf, S. Mutyala, W. Baumann, J. Sans, S. Weiss, M. Beller, Chem. Eur. J. 9 (2003) 1828;
 - (d) Y. Sakakibara, K. Sasaki, F. Okuda, A. Hokimoto, T. Ueda, M. Sakai, K. Takagi, Bull. Chem. Soc. Jpn. 77 (2004) 1013;
 - (e) R.K. Arvela, N.E. Leadbeater, J. Org. Chem. 63 (2003) 9122.
- [7] J.K. Kochi, J. Am. Chem. Soc. 79 (1957) 2942.
- [8] (a) C. Galli, J. Chem. Soc., Perkin Trans. 2 (1984) 897;
 - (b) C. Galli, J. Chem. Soc., Perkin Trans. 2 (1981) 1459;
 - (c) C. Galli, J. Chem. Soc., Perkin Trans. 2 (1982) 1139.
- [9] P. Hanson, S.C. Rowell, A.B. Taylor, P.H. Walton, A.W. Timms, J. Chem. Soc., Perkin Trans. 2 (2002) 1126.
- [10] D.J. Adams, A. Goddard, J.H. Clark, D.J. Macquarrie, J. Chem. Soc., Chem. Commun. (2000) 987.
- [11] General procedure: 3.0 mmol of ArN₂BF₄, added stepwise to a stirred mixture of 293 mg (4.5 mmol) of KCN, 108 mg (0.3 mmol, 10% mol) dibenzo-18-crown-6, 27 mg (0.3 mmol, 10% mol) CuCN 54 mg (0.3 mmol, 10% mol) phen and 71 mg (0.3 mmol, 10% mol) Cu(BF₄)₂ in 10 ml of dry MeCN under inert atmosphere at room temperature. A final mixture was stirred at room temperature during 2 h and poured into 50 ml of ether. A solid was filtered and washed twice by ether. The ether solution was evaporated and a crude mixture was purified by column chromatography on silica (eluent hexane or hexane/EtOAc, 8:2) to afford the corresponding nitrile. ¹H and ¹³C NMR spectra of all synthesized nitriles are identical to those of the authentic compounds.